

Technisches Merkblatt

Nachhaltig Bauen

Herausgeber

Bundesverband Spannbeton-Fertigdecken e.V. Paradiesstraße 208

12526 Berlin

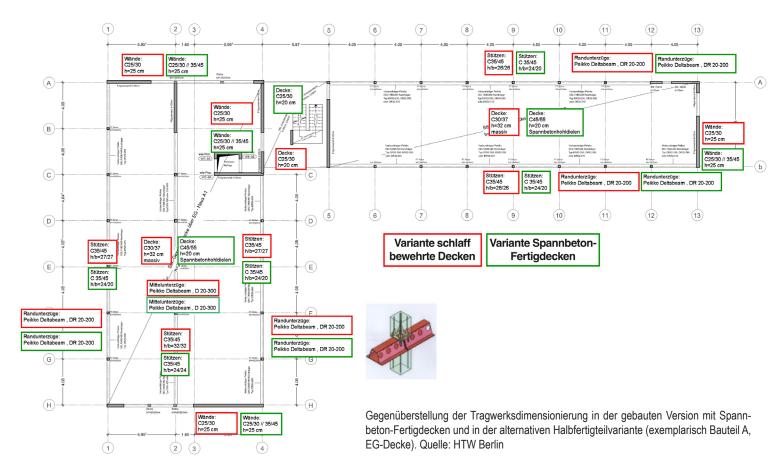
Telefon: +49 (0) 30 61 69 57 – 32

E-Mail: info@spannbeton-fertigdecken.de Internet: www.spannbeton-fertigdecken.de

Spannbeton-Fertigdecken zeichnen sich durch große Spannweiten, einen niedrigen Bewehrungsgehalt und eine leichte, materialeinsparende Bauweise aus. Welche Ökobilanz bieten sie gegenüber konventionellen Tragwerken?

Die Einsparpotenziale unterschiedlicher Tragwerkskonstruktionen bei Ressourcenverbrauch und CO₂-Emissionen sind im Hochbau bislang kaum betrachtet worden. Eine aktuelle Untersuchung zeigt, welche Potenziale hier ausgeschöpft werden können. Im Fokus der Studie steht die Frage, wie sich verschiedene Deckentragsysteme auf die Ökobilanz eines Gebäudes auswirken und welche Chancen hier materialeinsparende Spannbetondeckenkonstruktionen bieten. Die Hochschule für Technik und Wirtschaft Berlin (HTW) unter der Leitung von Prof. Dr.-Ing. Andreas Heuer hat im Auftrag des Bundesverbandes Spannbeton-Fertigdecken e.V. erstmals ein gesamtes Tragwerk – von den Decken über die Unterzüge und Stützen bis hinunter zu den Fundamenten – über eine vergleichende Ökobilanzierung untersucht, wie sich die Spannbetondeckenkonstruktion zur rein konventionellen Stahlbetonbauweise verhält.

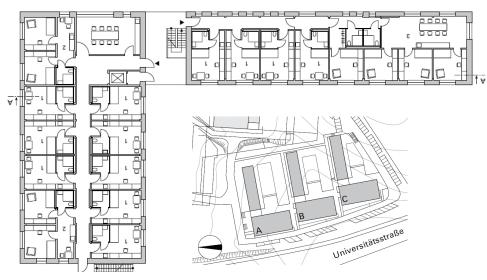
Serielles Bauen heute hat nichts mehr mit den Plattenbauten der 60iger und 70ger Jahre zu tun. ACMS Architekten GmbH aus Wuppertal haben für dieses Projekt den BDA-Architekturpreis 2020 erhalten.


Die Studie – Nachhaltigkeit als Entwurfsgrundsatz

In der Studie werden drei baugleiche Wohngebäude, die 2018/2019 mit Spannbeton-Hohldielen errichtet wurden, einer konventionellen Konstruktion mit Halbfertigteildecken gegenübergestellt.

Dabei handelt es sich um eine Wohnanlage für 258 Studierende, die als Slim-Floor-Tragwerk aus Spannbeton-Fertigdecken und deckengleichen Verbundträgern gebaut wurde.

Die Deckenspannweiten betragen zwischen 7,38 und 7,60 Meter. Die Treppenhauswände und Fundamente sind in Ortbeton, Stützen, Treppenläufe und Unterzüge aus Stahlbeton-Fertigteilen. Das Gesamttragwerk ist über die Spannbeton-Fertigdecken, die als horizontale Scheiben ausgebildet sind, sowie über die Stahlbetonwände ausgesteift.


Methodik

Für die Studie wurde zunächst die CO₂-Bilanz des Gebäudekomplexes mit Spannbeton-Fertigdecken ermittelt und dazu parallel das Gebäude mit konventionellen Stahlbetondecken neu dimensioniert, einschließlich notwendiger

Unterzüge, Stützen und Wände bis zu den Fundamenten. Nach Bestimmung der Materialmengen beider Bauweisen in Beton und Stahl erfolgte eine Bewertung der Ökobilanz.

Aus den Original-Planungsunterlagen für den erstellten Gebäudekomplex wurden neben den geprüften statischen Berechnungen auch die detaillierten Schal-, Bewehrungs- und Montagepläne entnommen. Die Deckenstärke der Spannbeton-Fertigdecken beträgt in nahezu allen Geschossbereichen 20 cm (C45/55). Unterzüge sind deckengleich als Peikko DELTABEAM® ausgeführt, die Fertigteilstützen mit 24/24 und in den Randbereichen mit 20/20 cm (bzw. 20/24 cm) bemessen.

Die Treppenhauswände, die vorrangig zur Aus-

Grundriss, 1. OG, Bauteil A und Lageplan zum Studentenwohnheim in Bochum-Laerheide. Quelle: ACMS, Wuppertal

Stand: Dezember 2023

steifung herangezogen wurden, besitzen eine Stärke von 25 cm. Ihr Anteil an der Gesamtmasse und an den Schadstoffemissionen ist bei beiden Bauweisen gleich und wird in dieser Studie nicht eingerechnet.

Die Bemessung des Tragwerks des fiktiven Vergleichsgebäudes mit schlaff bewehrten Halbfertigteildecken ergab teilweise neue Bauteilabmessungen. Dabei war das Durchbiegungskriterium für die Decken maßgeblich und führte zu Deckendicken von 25 cm und 32 cm. Die Dimension der Verbundträger blieb aufgrund der besseren Ausnutzung der effektiven Breite gleich, ebenso wie die Wanddicken, die in der originalen Bemessung leicht überdimensioniert waren. Die Stützen und Fundamente mussten mit den höheren Lasten aus den massiven Decken neu dimensioniert werden.

Blick in eine Wohnung mit dem sichtbaren Tragwerk aus Spannbeton-Fertigdecken und deckengleichen Verbundträger in der Außenwand

Über die Massenermittlung beider Objekte konnte der Materialeinsatz der Tragwerkssysteme unabhängig von den Materialgüten gegenübergestellt werden. Für die Ökobilanz ist dies ein erstes übersichtliches Ergebnis. Bei der Gründung und bei den Geschossdecken zeigten sich die größten Einsparpotenziale.

LCA: Ergebnisse

Für die Berechnungen wurden die CML- Charakterisierungsfaktoren (Version 4.1 Oktober 2012) verwendet. ANGABE DER SYSTEMGRENZEN (X = IN ÖKOBILANZ ENTHALTEN; MND = MODUL NICHT DEKLARIERT; MNR = MODUL NICHT RELEVANT)

Produ	uktions m	stadiu	Errich de	ım der ntung es verks			Nutz	ungssta	adium			Ent	sorgun	gsstadi	um	Gutschriften und Lasten außerhalb der Systemgrenze
Rohstoffversorgung	Transport	Herstellung	Transport vom Hersteller zum Verwendungsort	Montage	Nutzung/Anwendung	Instandhaltung	Reparatur	Ersatz	Erneuerung	rgieeinsatz Betreiben c Gebäude	Wassereinsatz für das Betreiben des Gebäudes	Rückbau/Abriss	Transport	Abfallbehandlung	Beseitigung	Wiederverwendungs-, Rückgewinnungs- oder Recyclingpotenzial
A 1	A2	A 3	A 4	A5	B1	B2	В3	B4	B 5	В6	B7	C1	C2	C3	C4	D
Χ	Х	Χ	MND	MND	MND	MND	MNR	MNR	MNR	MND	MND	Χ	Х	Х	Х	Х

ERGEBNISSE DER ÖKOBILANZ – UMWELTAUSWIRKUNGEN nach EN 15804+A1: 1 m² Spannbeton-Fertigteildecke (26,5 cm Deckendicke, C45/C55), Flächengewicht: 374,71 kg/m²

Parameter	Einheit	A1-A3	C1	C2	C 3	C4	D
Globales Erwärmungspotenzial	[kg CO₂-Äq.]	6,41E+1	0,00E+0	1,20E+0	1,15E+0	2,55E-1	-4,84E+0
Abbaupotenzial der stratosphärischen Ozonschicht	[kg CFC11-Äq.]	2,90E-13	0,00E+0	3,97E-16	5,69E-15	1,42E-15	-3,78E-14
Versauerungspotenzial von Boden und Wasser	[kg SO₂-Äq.]	7,76E-2	0,00E+0	8,12E-4	6,50E-3	1,63E-3	-8,95E-3
Eutrophierungspotenzial	[kg (PO ₄) ³ -Äq.]	9,70E-3	0,00E+0	1,74E-4	1,59E-3	1,85E-4	-3,34E-4
Bildungspotenzial für troposphärisches Ozon	[kg Ethen-Äq.]	8,86E-3	0,00E+0	-2,08E-5	7,10E-4	1,23E-4	-2,94E-3
Potenzial für die Verknappung abiotischer Ressourcen – nicht fossile Ressourcen	[kg Sb-Äq.]	4,73E-5	0,00E+0	1,11E-7	1,11E-6	9,83E-8	-9,87E-5
Potenzial für die Verknappung abiotischer Ressourcen – fossile Brennstoffe	[MJ]	4,08E+2	0,00E+0	1,61E+1	1,85E+1	3,62E+0	-4,24E+1

Auszug aus der EPD von DW SYSTEMBAU mit den LCA-Modulen, einigen untersuchten Parametern und den dazugehörigen Ergebnissen. Die EPD von DW SYSTEMBAU ist in der ÖKOBAUDAT, im DGNB-Navigator oder auf der Internetseite von DW SYSTEMBAU zu finden.

Auswertung

Die hier erstellte Ökobilanz berücksichtigt die LCA-Module Produktion (A1-A3), Entsorgung (C3 und C4) und Recyclingpotential (D). Für die Spannbeton-Fertigdecken (DW SYSTEM-BAU GMBH) und Peikko DELTABEAM® standen EPD-Dokumente (Environmental Product Declaration) zur Verfügung, die anderen Tragwerkselemente konnten mit entsprechenden Datensätzen der Plattform Ökobaudat bilanziert werden.

In der vorliegenden Ökobilanz wurden folgende Indikatoren berücksichtigt:

- Treibhausgaspotential (GWP, Global Warming Potential),
- Ozonabbaupotential (ODP, Ozone Depletion Potential),
- Versauerungspotential (AP, Adification Potential),
- Überdüngungspotential (EP, Eutrophication Potential),
- · das bodennahe Ozonbildungspotential und
- POCP (Photochemical Ozone Creation Potential).

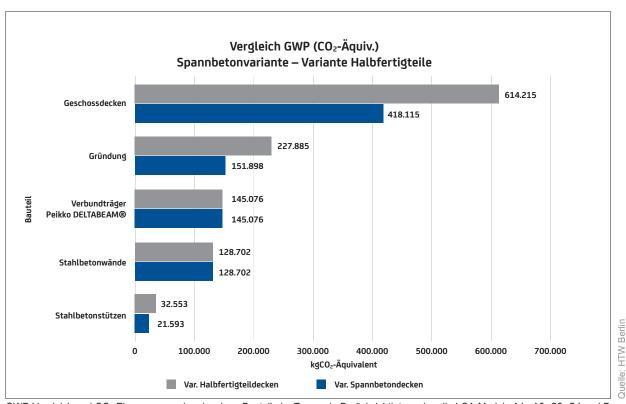
Diese Ökobilanz bezieht sich ausschließlich auf die Unterschiede im GWP, das maßgeblich für die Klimaerwärmung verantwortlich ist und als CO₂-Äquivalent in kg CO₂/Einheit eines Stoffes angegeben wird. Allerdings sind die Spannbeton-Fertigdecken auch in allen anderen von der DGNB untersuchten und beurteilten Umweltkriterien ökologischer als massive Halbfertigteildecken (siehe Tabelle unten).

Ergebnisse der Ökobilanzierung

Die Studie macht deutlich, dass nicht nur enorme Mengen an Rohstoffen eingespart werden können, auch die Treibhausgasemissionen werden beim Einsatz von Slim-Floor-Tragwerken aus Spannbeton-Fertigdecken massiv reduziert. Und weil Betondecken mit über 40 % die größten CO₂-Verursacher beim Rohbau sind, steckt hier auch das höchste Einsparpotential.

Die hohen Einspareffekte der vorgespannten Fertigdeckenelemente resultieren vorrangig aus den geringeren Deckendicken trotz großer Spannweiten, kombiniert mit dem niedrigen Be-

Variante Spanr	beton-Fertigdeck	en - gesamte Ökot	oilanz				
Modul	GWP [kgCO ₂ -eqv]	ODP [kg CFC11-eqv]	AP [kg SO ₂ -eqv]	EP [kg PO ₄ ³-eqv]	POCP [kg C2H4-eqv]	PERE [MJ]	PENRE [MJ]
A1-A3	1.021.458,8	1,6E-02	1.940,6	305,6	11.019,8	1.344.798,8	7.970.021,4
C3-C4	23.071,9	1,4E-03	124,4	19,1	1.808,5	42.134,0	332.785,5
D	-158.990,1	-3,7E-03	-467,8	-66,3	-4.712,8	-171.660,2	-1.424.647,3
Gesamt	885.541	1,406E-02	1.597	258	8.115	1.215.000	6.878.000
Variante Halbf	ertigteile - gesam	te Ökobilanz					
Modul	GWP [kgCO ₂ -eqv]	ODP [kg CFC11-eqv]	AP [kg SO ₂ -eqv]	EP [kg PO ₄ ³-eqv]	POCP [kg C2H4-eqv]	PERE [MJ]	PENRE [MJ]
A1-A3	1.303.957,9	1,7E-02	2510,7	426,9	11.082,9	2.284.211,0	9.800.465,8
C3-C4	30.340,1	1,4E-03	104,5	14,0	1.806,0	84.062,5	402.742,1
D	-185.866,7	-3,7E-03	-537,9	-87,6	-4.702,1	-371.173,7	-1.922.512,8
Gesamt	1.148.431	1,426E-02	2.077	353	8.187	1.997.000	8.281.000
Differenz							
Modul	GWP [kgCO ₂ -eqv]	ODP [kg CFC11-eqv]	AP [kg SO ₂ -eqv]	EP [kg PO ₄ ³-eqv]	POCP [kg C2H4-eqv]	PERE [MJ]	PENRE [MJ]
A1-A3	282.499,1	2,1E-04	570,2	121,3	63,1	939.412,2	1.830.444,4
C3-C4	7.268,2	4,6E-08	-19,9	-5,1	-2,5	41.928,5	69.956,6
D	-26.876,5	-3,5E-07	-70,1	-21,3	10,6	-199.513,5	-497.865,5
Gesamt	262.840	2,07E-04	480	-95	72	782.000	1.403.000
Prozentual	29,7%	1,49%	30,0%	36,8%	0,9%	64,4%	20,4%


Gegenüberstellung über alle Bauwerke (inklusive Stahlbetonwände in Ortbeton) In allen Bewertungskriterien der DGNB schneiden die Spannbeton-Fertigdecken besser ab, als die Halbfertigteildecken. Das Wohnquartier wurde von der DGNB mit dem Gold-Status ausgezeichnet.

Quelle: HTW Berlin

Decken schlaff bewehrt mit Halbfertigteilen		Decken in Spannbeton-Fertigdecken	Einspareffekt	
Decken		Decken		
Beton	817,5 m ³	Beton 1)	370,9 m ³	55%
Betonstahl	57.935 kg	Betonstahl / Spannstahl	7.732 kg	87%
		1) einschl. Vergussbeton		
Stützen		Stützen		
Beton	27,8 m³	Beton	15,2 m³	45%
Betonstahl	6.620 kg	Betonstahl	5.445 kg	18%
Wände		Wände		
Beton	161,8 m³	Beton	161,8 m³	0%
Betonstahl	15.920 kg	Betonstahl	15.920 kg	0%
Gründung		Gründung		
Beton	306 m³	Beton	229,4 m³	25%
Betonstahl	28.988 kg	Betonstahl	13.125 kg	55%

Ressourceneinsparpotential der einzelnen Bauteile für alle drei Baukörper Allein bei diesem Projekt wurde durch die Wahl des Tragwerks statt 1.313 m³ Beton nur 777 m³ Beton und statt 109 t Stahl nur 42 t Stahl verbaut.

GWP-Vergleich und CO₂-Einsparungen der einzelnen Bauteile im Tragwerk. Berücksichtigt wurden die LCA-Module A1 – A3, C3, C4 und D für alle drei Gebäude. Für die Peikko DELTABEAM® wurde die EPD DELTABEAM® Composite Beam vom 15.2.22 verwendet.

tonanteil aufgrund der industriellen Fertigung und effizienten Materialausnutzung. So können mit Spannbeton-Hohldecken je nach Typ bis zu 49% Betonmasse eingespart werden. Hinzu kommt der geringere Anteil an Spannstahl (über 80 % Einsparpotenzial). Die höheren Betongüten der Fertigdecken (C45/55) und die damit verbundenen größeren CO2-Emissionen gegenüber den schlaff bewehrten Decken (C30/37) werden über den geringeren Beton- und Stahlverbrauch mehr als ausgeglichen. Bessere Werte ergaben sich auch bei der Gründung und den Stützen. Bei Unterzügen und Wänden hingegen gab es aus den genannten Gründen keine Abweichungen. Das so eingesparte Global Warming Potential – allein an diesen drei Gebäuden – entspricht den jährlichen CO₂-Emissionen von 70 Mittelklassewagen bei einer Fahrleistung einmal rund um die Erde (40.000 km)!

Fazit

Beton hat im Rohbau den größten Anteil an den klimaschädlichen Treibhausgasemissionen. Die größten Einsparungen lassen sich bei den Deckensystemen erzielen. Bei diesem Referenzobjekt wurden allein durch die Entscheidung, diese Gebäude mit Spannbeton-Fertigdecken, statt mit massiven Halbfertigteildecken zu errichten, 25% der CO₂-Emissionen eingespart. Beim Einsatz des Peikko DELTABEAM®-Green können die CO₂-Emissionen für die Verbundträger um weitere 45% reduziert werden. Bei der alleinigen Gegenüberstellung der untersuchten Decken verursachen die massiven Halbfertigteildecken fast 50% mehr CO₂-Äquivalent als die Spannbeton-Fertigdecken.

Das Ergebnis zeigt, dass sich in der Baubranche heute schon große Mengen an CO₂-Emissionen einsparen lassen, allein über die Auswahl und die Dimensionierung der Tragsysteme.

Es ist ersichtlich, der maximale Hebel, um CO₂ einzusparen, liegt im Entwurfsprozess während der Auswahl von Bauprodukten und Konstruktionssystemen. Hier wird entschieden, wie nachhaltig gebaut wird!

Es sind Bauherren, Projektentwickler, Architekten und Tragwerksplaner, die den größten Einfluss auf die CO₂-Einsparung beim Bau eines Gebäudes haben.

Ansprechparter der Studie

Prof. Dr.-Ing. Andreas Heuer Fachgebiet Konstruktiver Ingenieurbau HTW Berlin Wilhelminenhofstraße 75A 12459 Berlin www.htw-berlin.de

Auftraggeber der Ökostudie

Bundesverband Spannbeton-Fertigdecken e.V. (BVSF)

Paradiesstraße 208 12526 Berlin

Telefon: +49 (0) 30 61 69 57 – 32 www.spannbeton-fertigdecken.de

